17th ANNUAL TECHNICAL CONFERENCE
Wednesday May 6th, 2009 - Sheraton Abu Dhabi Hotel & Resort - Abu Dhabi, UAE

“Gas Optimization a Key for Success”

The 17th Annual Technical Conference of the Gas Processors Association – GCC Chapter was successfully held on Wednesday 6th May 2009 at the Sheraton Abu Dhabi Hotel & Resort in United Arab Emirates with a theme of “Gas Optimization a Key for Success”.

Nine technical papers were presented by the Chapter’s member companies which represent the major oil & gas companies all over the GCC. There were five papers from Saudi Aramco, other papers were from Qatar Petroleum (QP), Oryx GTL-Qatar, Banagas-Bahrain and Linde AG-Germany. These presentations covered wide range of topics relevant to the gas processing industry with a focus on gas optimization in which it highlighted the latest developments and best practices in this important industrial sector in the region.

During the opening session of the conference, a welcome remarks was delivered by the Chairman of the GCC Chapter Mr. Saad A. Turaiki, VP Sothern Area Oil Operations-Saudi Aramco. The keynote speech of the conference was provided by Mr. Ismail Jamil Al Ramahi, Manager Gas Processing Division, Exploration & Production Directorate of Abu Dhabi National Oil Company (ADNOC).

Gas Processing Reliability through Effective Maintenance

Wednesday 11th November, 2009 - Abu Dhabi, UAE

4th SPECIALIZED TECHNICAL SESSION

Gas Processing Reliability through Effective Maintenance was the subject of the 4th Technical Specialized Session which was organized by the GPA-GCC Chapter. More than 80 participants from all over the GCC attended the seminar which was held on November 11th, 2009 at the Sheraton Abu Dhabi Hotel & Resort in UAE.

Five technical presentations were delivered covering a wide range of topics on effective maintenance strategies and tools in gas processing industry highlighting the latest developments and best practices in this important industrial sector in the region.

Continued on 9
Visits to Abu Dhabi’s Companies

An official visit was made on 25th March 2009 to senior officials in Abu Dhabi National Oil Company (ADNOC) and Abu Dhabi Gas Liquefaction Company (ADGAS). Another meeting was held with Abu Dhabi Gas Industries (GASCO) Management on 12th November 2009.

The Chapter’s team comprised Mr. Saad Turaiki, Mr. Ahmed Majid, Mr. Mohamed Bu Rashid, Mr. Mohammad Al-Abdulmoghn, Mr. Kefah Al-Faddagh, Mr. Abdulla Musabeh and Mr. Mohamed Egab. These meetings aimed at strengthening the relations with the major oil & gas companies in the Gulf and to promote the Chapter various technical activities and programs.

It is worth mentioning that ADNOC and ADGAS are member companies at the Chapter for many years. GASCO has recently joined as an active member which will certainly add value to the Chapter business.

Calendar of meetings & activities for the year 2009 / 2010

<table>
<thead>
<tr>
<th>ACTIVITY</th>
<th>DATE</th>
<th>VENUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Technical Committee Meeting</td>
<td>7th October 2009</td>
<td>Manama</td>
</tr>
<tr>
<td>Executive/Technical Committee Meeting & Companies Visits</td>
<td>10th November 2009</td>
<td>Abu Dhabi</td>
</tr>
<tr>
<td>4th Specialized Technical Seminar</td>
<td>11th November 2009</td>
<td>Abu Dhabi</td>
</tr>
<tr>
<td>Executive/Technical Committee Meeting & Companies Visits</td>
<td>27th January 2010</td>
<td>Muscat</td>
</tr>
<tr>
<td>Technical Committee Meeting</td>
<td>17th February 2010</td>
<td>Manama</td>
</tr>
<tr>
<td>Annual Organization Meeting</td>
<td>27th April 2010</td>
<td>Muscat</td>
</tr>
<tr>
<td>18th Annual Technical Conference</td>
<td>28th April 2010</td>
<td>Muscat</td>
</tr>
<tr>
<td>Technical Committee Meeting</td>
<td>9th August 2010</td>
<td>Manama</td>
</tr>
<tr>
<td>Executive/Technical Committee Meeting</td>
<td>2nd November 2010</td>
<td>Muscat</td>
</tr>
<tr>
<td>5th Specialized Technical Seminar</td>
<td>3rd November 2010</td>
<td>Muscat</td>
</tr>
</tbody>
</table>
This paper shared the experience of Saudi Aramco’s Berri Gas Plant (BGP) energy assessment team in finding a true energy saving potential from BGP’s NGL recovery facility. It involved a comprehensive energy assessment of both the process and utility sections of the facility. In the case of energy saving assessment from the process side, the pinch analysis together with the process simulation tool is used extensively to identify the energy saving opportunities. The major highlight from the process assessment is that the team does not evaluate the value of energy saving ($/year) directly but rather focuses on quantifying the amount of savings in both heating and cooling loads (MMBtu/hr or MW). At this stage too, the team highlighted the benefits and concerns of such identified energy saving initiatives, together with the proposed project cost estimates, operability aspects and safety considerations.

In a separate task, the utility team used an in-house utility modeling tool to assess energy performance of the existing utility system. The advantage of having such a utility modeling tool is not only for its ability to optimize the existing utility performance but also the ability to link or interact with our energy saving findings from the process section earlier. With this link, the team can then clearly see the impact of reducing, for example, a process heating load on the performance of the whole utility system in terms of financial gain. Hence, this allows the true energy saving value of a given process improvement initiative to be determined from the overall performance of the utility system.

In conclusion, the true value of energy savings from the BGP energy assessment was determined through a systematic procedure of assessing the energy interaction between the process and utility system. The procedure used process simulation and in-house utility modeling capabilities to generate realistic assessment on energy saving opportunities. These initiatives were screened and deliberated in detail by the team before an energy saving roadmap was finally proposed to guide BGP in implementing the energy saving initiatives.
Associated gas from the oil industry and end flash gas from LNG plants have been flared for decades. The prevailing attitude towards CO₂ emissions and other pollutants requires smart approaches to processing low BTU gases in a cost effective and environmentally responsible manner.

Gas turbines have limitations for the nitrogen content of the fuel gas and, more specifically, for rapid Wobbe index transients. Utilizing low BTU gas for gas turbine applications requires upgrading through the use of nitrogen rejection units. Linde Engineering has designed and supplied cryogenic nitrogen rejection units (NRU) for the only three base load LNG plants requiring end flash gas upgrading. This first generation of NRUs handles gases within a relatively small range of the nitrogen concentration in the feed stream.

The injection of nitrogen into oil reservoirs for Enhanced Oil Recovery (EOR) represents a new challenge for cryogenic nitrogen rejection technology. Over the duration of the production, the nitrogen concentration in the resulting associated gas will steadily increase over time from a few percent up to 50 vol % or more of the entire gas flow.

This paper concluded that NRUs based on double column processes can be easily integrated into end-flash systems of LNG plants when the N₂ concentration is at least 30 vol %, which can be achieved with a N₂ stripper in place of a simple flash drum.

Recycling pure N₂ as auxiliary reflux to the double column system provides the required flexibility to keep low hydrocarbon emission level even during drastically changing feed gas compositions.

Online Sulfur Wash Technique Restored CLAUS Unit Maximum Capacity & Eliminated an Emergency Shutdown

This paper intended to share a successful operational story in implementing an online sulfur wash technique to remove an excessive pressure drop (6.3 psig) across conventional CLAUS converter (SRU2 converter #1) and restore unit’s maximum capacity that has been limited by 10 MMSCFD. The experienced high pressure drop was due to soot accumulation on the catalyst as a result of sub-stoichiometric burning of light hydrocarbons during plant startup. The most common practice to remove this soot and restore normal pressure drop across the catalytic converter is “Sulfur Wash” technique by operating the affected converter below sulfur dew point. This means that the produced sulfur will flow by gravity through the bed flushing the soot to restore the normal pressure drop. Sulfur Wash findings revealed a successful restoration of plant full capacity (40 MMSCFD) and normal pressure drop across the first converter. This paper discussed in details sulfur wash procedure, calculations, findings and optimum recommendations to prevent reoccurrence.

Sulfur wash is an online process that will improve the pressure drop without the need for an emergency shutdown to remove the soot mechanically. As cited earlier, performing sulfur wash requires careful implementation of the best practice procedure that has been developed to ensure a safe operational mode. To avoid Claus catalyst contamination with soot formation, it is recommended to improve several process practices, e.g., utilizing a low-range portable oxygen analyzer to ensure a stoichiometric fuel gas firing, minimizing hydrocarbon carryover from gas treating units, and ensuring accurate metering for both air and fuel gas streams.
This paper reviewed the available information on corrosivity prediction in assessment of plant operations, process control and materials selection. The high levels of CO$_2$ & H$_2$S with high pressure and temperature will cause corrosion and failures in these units in excess of about $50 million per incident. It is necessary to understand the corrosion impact of associated & refinery off gases in the existing compressor stations, providing safe operating boundaries for various metals at varying hydrogen partial pressure and process temperature in accordance to the applied codes/standards. Given that recommendations in petroleum gas industries for the materials used in CO$_2$ & H$_2$S containing environments in oil and gas production.

The compressors are addressed broadly, while focus has been retained on ancillary equipment such as scrubbers, coolers and control relief valves. This study also provides broad recommendations for managing any associated corrosion risk such as metal loss, crack integrity assessment, defects in pipeline including its geometric difference, leaks and failure modes. This study was performed in two ways, application of NACE MR0175 & EFC 16 Codes / Standards and checking of CO$_2$/H$_2$S/Water corrosion rates.

Maximizing Profitability of Offshore Gas Plant Asset with Magnetic Bearings and Twisted Technology

The quality of produced gas/liquid is the primary objective for selecting cost effective process technology in gas treatment plants.

Hydrocarbon liquid recovered from natural gas is stabilized to produce a safe transportable liquid. Typically stabilized liquid has a specific vapor pressure (Reid vapor pressure) of less than 12 psi.

Heating values and hydrocarbon dew point are the primary gas specifications that must be met; meeting these conditions involves cooling the gas and condensing out sufficient liquids to meet hydrocarbon and water dew point specifications to avoid problems during gas transport and combustion.

These specifications are typically achieved using either:
- External refrigeration (e.g. propane)
- Reduction in pressure and temperature (using a JT valve with LTS, or a turbo-expander).

A new technology, Twister, was introduced in 2003 and was used successfully to meet specifications in a full scale treatment plant.
This paper proposed to compare and assess the suitability of the Twister technology as an alternate to the existing turbo-expander at QP’s existing North Field Alpha (NFA) plant.

The Twister technology offers significant advantages; less plot space, simple technology operation, lower chemicals consumption, lower CAPEX, lower emissions, lower OPEX and life cycle costs, and an increased degree of process safety.

This paper highlighted also the application of the magnetic bearing for a particular application in turbo-expander. The various stages of retrofitting is discussed and the challenges are highlighted. A specific design aspects is also covered, which proved quite vital in achieving the safe and reliable operation of the machine.

Based on the relative differences in the criteria highlighted above, the overall conclusions for either high pressure onshore or onshore gas processing plant is that the Twister technology is likely to be more efficient than the other traditional gas treatment processes whilst still meeting gas specifications suitable for transport.

Magnetic bearing is latest and proven technology. The challenge was its performance in sour gas application. The technology was successfully implemented with modification in the rotor system by incorporating compatible material. The machine is operating successfully and reliably since the change design. This has led to the cost reduction, less maintainability and better availability of the machine.

Mercury Removal Unit (MRU) Process, Operation & Bed Replacement Experience

Mercury is found in vapor and liquid forms in condensate transport pipelines and process equipment, and also mixed with sludge.

This paper discussed Berri Gas Plant (BGP) Mercury Removal Units’ (MRUs) performance, bed replacement, commissioning and operation experience.

Mercury is present in most produced natural gas streams. The presence of mercury in natural gas can have catastrophic effects on gas plants. At levels higher than 10 Nanograms/Nm3, corrosion damage to aluminum heat exchangers can occur due to mercury amalgamating with the aluminum, causing embrittlement which reduces mechanical strength resulting in unexpected failure and gas leakage. The mercury also attacks low temperature components of liquefied natural gas refineries, poisons catalysts and causes reduction in the quality of refined products.

Mercury and mercury compounds are also extremely toxic. They may enter the body by inhalation ingestion, or penetration through the skin. Mercury can damage lungs, central nervous system, and kidneys. It may accumulate to such elevated levels that adversely affect workers and environment, particularly when these pipelines and equipment are opened for maintenance and/or cleaning.

In conclusion, BGP successfully resolved the high mercury content in the feed gas by replacing the activated carbon material with the PURASPEC 1156 mercury absorbent. The moisture and performance issues were also resolved by adhering to the appropriate unloading and loading procedure provided by the vendor in addition to gradual gas introduction to the bed. PURSPEC-1156 showed excellent mercury absorbent capacity compared to the activated carbon which was confirmed by outlet mercury content analysis.
This paper discussed the chronic problem of black powder in pipelines and the use of chemical cleaning. Black powder debris builds up on the inner surface, preventing accurate readings of pipeline thickness. The East West Pipelines Department decided to introduce the newly approved chemical cleaning for the first time to validate its sales gas network. The cleaning chemical agent has a surfactant property enabling the agent to lay a film along the inner surface of the pipeline. Diesel has been used, in the same train, to ensure elimination of water and remaining solids. Thus, the cleaning has been done numerous times to control the volume of residue. Pipeline profile simulations were studied to determine the optimum train speed that will allow effective cleaning and smooth traveling along the rigorous terrain across Saudi Arabia.

Most importantly, the cleaning has been done online without interrupting the supply to customers. The paper illustrated the procedure used in launching, tracking and receiving of the chemical train, as well as the cleaning validation method.

In conclusion, Black Powder is a chronic problem that faces sales gas pipeline operators. Conditions of pipelines with existing black powder are unidentified. Thus removal of black powder is important.

Chemical cleaning is a way of cleaning black powder after its appearance but does not resolve its reoccurrence. A surfactant chemical cleaning method proved successful in obtaining thickness readings of the internal pipeline wall. Validation of this method was accomplished through the MFL tool obtained data.

Mr. Ali S. Ibrahim, Saudi Aramco, Saudi Arabia

Oryx GTL is a Gas-to-Liquids (“GTL”) plant in Qatar, implemented through a JV between Qatar Petroleum (“QP”) and SSI Synfuels International (SSI). The Oryx GTL story began
in 1996 after the first engagement between QP and SSI regarding a 1st of its kind GTL project taking advantage of the biggest single non associated gas reservoir in the world located in the North Field, Qatar.

The first feasibility study progressed on a 20,000 bpd design basis but after a minor delay during 1997 due to low oil prices. During 1999 value engineering was conducted which lead to a reduction of the capital project cost significantly as well as increasing the capacity to 32,000 bpd. The Front End Engineering Design (FEED) was started in 2001 and the EPC was awarded to a contractor in 2003. After three years Oryx GTL was ready to be commissioned and Oryx GTL’s first products were produced in 2006.

Optimizing the Process Design on Inlet Gas Production Separators

Production Separators are typically installed at gas development facilities. The function of these vessels is to separate multiphase raw gas feed into wet gas, condensate, and produced water for further processing.

The purpose of this paper was to outline an approach to optimize the sizing and requirement for Inlet Gas Production Separators. In some cases, it is practical to defer capital expenditure by installing a smaller separator during the early field life of a gas development field. An identical parallel separator can be added in later field life as the flowing well head pressure declines to maintain the same efficiency for multiphase separation, and surge capacity considerations.

This application can be widely used if the construction and commissioning activities of a gas conditioning field are staged over a number of years as more wells come on stream, and more equipment (such as future inlet compression, etc.) is added to maintain the production profile.

Mr. Bilal Kureshi, Saudi Aramco, Saudi Arabia
Gas Processing Reliability through Effective Maintenance

The session commenced with opening remarks by the Chapter Chairman Mr. Saad Turaiki and then followed by the technical papers:

1. Shedgum Gas Plant Total Maintenance Reliability Program
 by Mr. Khalid A. Said from Saudi Aramco, Saudi Arabia

2. The Need for Implementing an Asset Integrity Strategy – An Experience at Qatar Petroleum NGL Plants
 By Mr. Khalid Al-Daql from Qatar Petroleum, Qatar

3. Preventive Maintenance Optimization: Case Study
 By Mr. Tariq S. Sultan from Saudi Aramco, Saudi Arabia

 By Mr. Esam Saeed from Bapco, Bahrain

5. Maintenance Council of Saudi Aramco - A Driver of Maintenance Improvement towards Best-in-Class Performance
 By Mr. Nezar Shammasi from Saudi Aramco, Saudi Arabia

The papers touched on subjects of high interest to the audience which provoked good interaction between presenters and participants, sharing their knowledge and experience.

The success of the fourth specialized session proved the importance of the selected subjects and the need to continue with these specialized sessions focusing on areas of high and common interest to the GPA-GCC Chapter member companies.

These successful achievements demonstrated the valuable and effective efforts of the GPA-GCC Chapter in expanding its activities to better serve the oil and gas companies of the region by providing the platform for the professionals to share the knowledge, experience and industry best practices.
Best Paper Award 2009

The GPA – GCC Chapter “Best Paper Award” is granted to recognize outstanding technical presentations which are delivered during the Annual Technical Conferences.

The best paper of the 17th Technical Conference held on May 6th, 2009 in Abu Dhabi, as ranked by the audience was:

“Mercury Removal Unit (MRU) Process, Operation & Bed Replacement Experience”
- Mr. Omer M. Ba Aqeel
Saudi Aramco (Saudi Arabia)

The Best Paper Speaker will be awarded by the Chapter Chairman and other Executive Committee members at the forthcoming Annual Technical Conference to be held on 28th April 2010 in Muscat, Oman.

It is worth mentioning that this paper has been accepted by the Oil & Gas Journal for publication.

Best Paper Awards have been made to date as follows:

- 7th Technical Conference – 1999
 - Yousif Abdulla Yousif – GPIC (Bahrain)
 “Mercury in Natural Gas – The GPIC Experience”

- 8th Technical Conference – 2000
 - Kefah Al-Faddagh & Mater Al-Dhafeeri – Saudi Aramco (Saudi Arabia)
 “Challenges in the Process Selection for Haradh Gas Plant”

- 9th Technical Conference – 2001
 - Yuv R. Mehra – Saudi Aramco (Saudi Arabia)
 “WHICH TECHNOLOGY FOR RECOVERING NGL VALUE?”

- 10th Technical Conference – 2002
 - Mohamed Al-Khalidy & Steve Summers – QATARGAS (Qatar)
 “QATARGAS SULFUR RECOVERY EXPANSION PROJECT”

 - E. Ross Mowrey & Jorge H. Foglietta – Randall Gas Technologies (USA)
 “Efficient, High Recovery of Liquids from Natural Gas Utilizing a High Pressure Absorber”

- 12th Technical Conference – 2004
 - Hamza Bakhash – KNPC (Kuwait)
 “Kuwait Gas Management System (KGMS) - Case Study”

- 13th Technical Conference – 2005
 - Faisal Al-Mahroos & K. Kamar - Bapco (Bahrain)
 “Emerging LPG Potential of Middle East Region”
 - Gabriel T. Fernandez & Mehryar Beyk - Saudi Aramco (Saudi Arabia)
 “Three-Phase Production Trap Sizing Application for Gas Oil Separation Plants”

- 16th Technical Conference – 2008
 “Saudi Aramco Experience with Reaction Furnace Refractory Systems: Failure Case”
IPTC 2009

International Petroleum Technology Conference (IPTC 2009) was one of the major events organized in the Region. It was successfully held from 7-9 December 2009 in Doha, Qatar.

GPA including the GCC Chapter were among the official co-sponsors for this international conference, as the GPA GCC Chapter represented by senior staff from Saudi Aramco and Qatar Petroleum in which they played a key role in the Program Sub-Committee of the IPTC.

IPTC 2010 was attended by over 3,200 registrants, representing more than 520 organizations and 63 countries.

The Chairman of the GCC Chapter of the GPA praised all the efforts made this international technical event a success.

Global Gas Processors Alliance

GLOBAL SHARING OF INFORMATION

Each member of the gas processing organizations that make up the Global Gas Processors Alliance will have access to the various papers/presentations from each of the organizations various meetings. Each Global Alliance member organization will be able to offer its members access to this wealth of information as a member benefit.

Participating groups are: GPA GCC, GPA Europe, GPA USA, GPA Canada and GPA Venezuela Chapters. Currently over 1,000 papers and presentations are available.

Non Members are invited to join the GPA in order to access this data base.

http://ggpa.gpaglobal.org/

Thank You!
About the GPA - GCC Chapter

OUR MISSION
To serve as a forum for the exchange of ideas, technology and information that will benefit both the upstream and downstream Gas Processing industries, and their Suppliers, with a view toward improving Plant Operations, Health, Safety and Environmental performance in the GCC countries.

OUR VISION
To be the focal point and the main source of information on the Gas Processing industry in the Gulf Cooperation Council countries.

MEMBERSHIP
Membership in this organization is open to GCC Representatives of:

- Companies owning and/or processing gas. These are classified as “Members”.
- GCC-based organizations involved in the supply and/or service to the gas industry. These are classified as “Associate Members” and are entitled to vote on all matters in the Organization’s Annual meeting except for the Executive Committee elections.

All membership applications are considered and approved by the Executive Committee.

Executive Committee of year 2009/2010

<table>
<thead>
<tr>
<th>NAME</th>
<th>DESIGNATION</th>
<th>COMPANY/COUNTRY</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mr. Saad Turaiki</td>
<td>Chairman</td>
<td>SAUDI ARAMCO - Saudi Arabia</td>
</tr>
<tr>
<td>Mr. Fahad Al-Subaiey</td>
<td>Vice - Chairman</td>
<td>QP - Qatar</td>
</tr>
<tr>
<td>Mr. Ahmed Y. Majid</td>
<td>Secretary Treasurer</td>
<td>BANAGAS - Bahrain</td>
</tr>
<tr>
<td>Mr. Yusuf Abdulla Yusuf</td>
<td>Member</td>
<td>GPIC - Bahrain</td>
</tr>
<tr>
<td>Mr. Khalid Taher</td>
<td>Member</td>
<td>BAPCO - Bahrain</td>
</tr>
<tr>
<td>Mr. Abdullah Al-Ajmi</td>
<td>Member</td>
<td>KNPC - Kuwait</td>
</tr>
<tr>
<td>Mr. Mohammed Al-Otaibi</td>
<td>Member</td>
<td>KOC - Kuwait</td>
</tr>
<tr>
<td>Mr. Abdullah Musabeh</td>
<td>Member</td>
<td>DUGAS - UAE</td>
</tr>
<tr>
<td>Mr. Samir N. Khoury</td>
<td>Member</td>
<td>CCC - UAE</td>
</tr>
<tr>
<td>Mr. Goetz Kassing</td>
<td>Member</td>
<td>Linde - Saudi Arabia</td>
</tr>
</tbody>
</table>

Technical Committee of year 2009/2010

<table>
<thead>
<tr>
<th>NAME</th>
<th>DESIGNATION</th>
<th>COMPANY/COUNTRY</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mr. Mohammad Al-Abdulmoghni</td>
<td>Chairman</td>
<td>SAUDI ARAMCO - Saudi Arabia</td>
</tr>
<tr>
<td>Mr. Kefah A. Al-Faddagh</td>
<td>Member</td>
<td>SAUDI ARAMCO - Saudi Arabia</td>
</tr>
<tr>
<td>Mr. Mohammed Bu-Rashid</td>
<td>Member</td>
<td>BANAGAS - Bahrain</td>
</tr>
<tr>
<td>Mr. Yusuf Abdulla Yusuf</td>
<td>Member</td>
<td>GPIC - Bahrain</td>
</tr>
<tr>
<td>Mr. Khalid Taher</td>
<td>Member</td>
<td>BAPCO - Bahrain</td>
</tr>
<tr>
<td>Mr. Abdullah Al-Ajmi</td>
<td>Member</td>
<td>KNPC - Kuwait</td>
</tr>
<tr>
<td>Mr. Mohammed Al-Otaibi</td>
<td>Member</td>
<td>KOC - Kuwait</td>
</tr>
<tr>
<td>Mr. Ahmed Khaja</td>
<td>Member</td>
<td>QP - Qatar</td>
</tr>
<tr>
<td>Mr. Mohamed A. Egab</td>
<td>Member</td>
<td>ADGAS - UAE</td>
</tr>
<tr>
<td>Mr. Adel Al Jabri</td>
<td>Member</td>
<td>ADCO - UAE</td>
</tr>
</tbody>
</table>