Chairman’s Message

It has been a great honor for me to be able to serve as Chairman of the GPA - GCC Chapter since the beginning of 1999. I have been fortunate in having a very capable Board of Directors and I would like to thank our Board Members for volunteering substantial amounts of time and effort in 1999.

Special thanks and appreciation also go to our previous Chairman, Mohammed Saleh Shaikh Ali (Under-Secretary, Oil and Industry at the Ministry of Oil and Industry) who was Chairman since the inception of the Chapter in April 1993. His significant contribution towards this Chapter, and his personal in-depth experience and insight have dramatically promoted the Chapter’s objectives.

I am pleased to see the birth of our first issue of the Chapter’s newsletter “News Focus” which hopefully will serve as a tool of communication between companies, members and individual members attending our Annual Technical Conferences.

This year’s conference was our 7th and was held in Bahrain in May. It was a splendidly organized and well-run conference. The papers presented were generally very good and the questions received from the audience were exceptional in their varied interest.

We on the Executive Committee serve to achieve the objectives of the GPA - GCC Chapter by providing a forum for Gulf Cooperation Council gas and petrochemical companies to get acquainted with new developments and changes in technical “know-how” and information. We also recognize the significant interest among the members of the gas-processing industry to improve their plant operations and related activities.

The 8th Technical Conference will take place in Manama in May 2000 and I urge companies to encourage their staff to seize this opportunity to participate in and benefit from this meeting. I look forward to seeing you at the Year 2000 gathering!

Mohammed Al-Khalifa

IN THIS ISSUE

- Chairman’s Message p. 1
- A General Review of the 7th Technical Conference p. 1
- A Brief Assessment of the 7th Technical Conference p. 6
- Summary of Annual Organization Meeting 1999 p. 6
- Summary of the Executive and Technical Committee Meetings 1999 p. 7
- Bu-Rashid Attends 78th GPA Annual Convention p. 7
- Outlook 2000 p. 7
- About the GPA - GCC Chapter p. 8

A General Review of the 7th Technical Conference

A total of 126 delegates representing the major oil and gas companies in the Gulf region attended the 7th Technical Conference which was held at the Holiday Inn’s Bahrain Conference Centre in Bahrain on May 19, 1999.

In his opening remarks at the Conference, the Chapter’s chairman Dr. Shaikh Mohammed Bin Khalifa Al-Khalifa spoke about the many challenges facing the gas industry today, chief among them the drop in oil prices.

“The drop in oil prices has forced governments to readjust their expenditure policies and has forced most companies to review their plans in terms of both capital and operational expenditure,” he said.

According to a study published in “Petrostrategy” journal, the loss in the revenue of the OPEC members as a result of the drop in oil prices is estimated at 82 billion dollars over the 15-month period between January 1998 and March 1999. Today, he said, the challenge to the gas industry is to be able to maintain effective operations within tight budget restrictions. Another challenge facing the gas industry in the second half of 1999 was the Y2K problem, which necessitated remedial action in a tight schedule.

Dr. Shaikh Mohammed thanked all those who worked on (Continued on page 2)
New Breakthrough Technologies

Technological breakthroughs being developed by Saudi Aramco to save the company millions of dollars annually were the focus of the conference’s keynote speech presented by Ali A. Al-Muhareb, Saudi Aramco’s Vice-President of Engineering Services.

Mr. Al-Muhareb explained that “breakthrough” as defined by Saudi Aramco is a new technology that will add at least one million dollars in benefits annually, beginning within one year of implementation.

To set the stage for why the introduction of new technologies is so important, Mr. Al-Muhareb briefly reviewed the history of the gas processing business in the Gulf area—from the early years of oil exploration and production in the Gulf region when associated gas was generally considered uneconomical to exploit, to the present situation with natural gas from associated and non-associated gas being used as feedstock to massive industrial complexes in many Gulf countries. With LPG it has become the preferred energy resource for power generation, desalination plants, petrochemicals and many other world-scale facilities serving local and export markets.

Mr. Al-Muhareb said breakthrough technologies currently being explored by Saudi Aramco fell into three categories: acquiring existing technology; researching possible breakthroughs on their own, and partnering with others in the industry.

“Acquiring existing technology,” he said, “is being done in the area of energy conservation, in which Saudi Aramco was investigating and acquiring existing technologies in their efforts to further reduce energy consumption. Aspects of the project include heating, air-conditioning, electrical power and lighting.”

Expected savings from one aspect alone, the use of variable speed motors, is likely to be more than $40 million per year. In the early 1980’s, the oil crunch made many process managers in the U.S.A. and in Europe realize that energy losses associated with damper controls on blowers, fans, and throttling valves on pumps and compressors was substantial. By installing variable frequency drives on induction motors, power savings were obtained.

“For example, in one location within Saudi Aramco, 18 very large motors are being modified to include variable frequency drives. The saving on this single project is $3 million dollars per year in electrical power. And, when you realize that Saudi Aramco has over 5,000 motors greater than 100 horse power, you can see the huge potential for power savings.”

Saudi Aramco is also doing research to find or develop new ideas, like the ongoing evaluation of solutions to Claus Catalyst Deactivation. BTX, Benzene, Toluene, and Xylene contained in the acid gas cause severe deactivation of the Claus Catalyst. By eliminating the BTX problem, it is estimated that over $1 million dollars per year can be saved.

An example of Saudi Aramco teaming up with industry partners is the work being done with Gas Research Institute (GRI), which has a research budget of over $200 million per year. As a member in the Gas Research Institute, Saudi Aramco benefits by gaining access to research and development projects, establishing formal contact and networking with member companies, and obtaining a complete set of past GRI technical reports for review and application. The membership also provides a continuous source of new technologies for use, enabling the company to stay current with many technological changes.

Mr. Al-Muhareb ended by challenging all participants to consider their valuable role in technology transfer, and to adopt a mind-set of breakthrough thinking.

Improving Uthmaniyyah Gas Plant Desiccant Unloading Procedure

The first speaker at the 1999 Technical Conference was Yousif A. Al-Rabiah of Saudi Aramco, who discussed the advantages of a novel desiccant unloading procedure which was implemented in one Saudi Aramco gas plant in 1998.

The molecular sieve material in all Gas Dehydrators of the Gas Plant Chill-down Modules was removed safely during 1998 when this procedure was used. Implementation of this procedure eliminates the likelihood of fuel-induced fire as hydrocarbon concentrations are reduced to lower and safer levels.

The new procedure also reduced nitrogen consumption requirements during the purging time and through unit downtime. Nitrogen consumption was about 30,000 gallons per module down from 75,000 gallons typically consumed in the previous procedure.

Purging time was also down to 30 hours - 66% of the time.
required in the old procedure, a potential for savings of at least US$2 million from reduced equipment downtime. This optimization was achieved as a result of changing the temperature at which the vessel is purged with nitrogen.

Mercury in Natural Gas - The GPIC Experience

Another speaker at the Conference was Yousif Abdulla Yousif, Technical Services Manager at GPIC. In his paper entitled “Mercury in Natural Gas - The GPIC Experience”, he described the chronology of events and activities in GPIC from the time a small amount of mercury was noticed for the first time at the Inert Gas Cooler located in the refrigeration loop, until the installation of the Mercury Guard System for the natural gas feedstock. GPIC carefully investigated the level of mercury content in the natural gas feedstock, the acceptable lower limit of mercury level in the natural gas, the impact of mercury in the plant metalurgy, and the potential for such low level of mercury in the gas to poison the catalyst.

A HAZOP study was undertaken to prepare a point-by-point analysis to investigate the safe operation of the plant against the mercury content in the feed gas until the time the Mercury Guard System was installed on a temporary basis in November 1996 during the planned shutdown of the complex. A proven precision instrument was installed to detect the extremely low level of mercury in the gas stream, and a temporary sulphur impregnated carbon type mercury removal system was installed. This was replaced with a permanent Mercury Guard System installed in March 1998.

Performance and Operating Problems: ADGAS Train-3 Acid Gas Removal Unit

Khaled W. Osman, Senior Process Engineer in Operations Division, and Ammar Boukhelf, Process Engineer in Engineering & Technical Services Division at ADGAS, made a presentation on the performance and operating problems of the company’s Train-3 Acid Gas Removal Unit.

The Unit, a Benfield Hi-Pure design, is a hybrid arrangement of the Benfield (carbonate) and amine technologies. The carbonate section, using potassium carbonate as the solvent, does the bulk removal of H2S and CO2. The amine section, using DEA solution as the solvent, does the trim removal to a purified gas containing a maximum of 50 ppm (vol) CO2 and 5 ppm (vol) H2S.

Since the initial Train-3 commissioning in 1994, this plant experienced malperformance of the Process Gas Absorber (PGA) and heavy foaming of the carbonate and DEA solutions.

The PGA performance was especially unsatisfactory for the CO2 removal; this section produced off-spec sweet gas containing up to 2200 ppm CO2 compared to design spec of 1240 ppm, despite operating at 70% of design acid gas load. Scanning of this column conducted in 1995 indicated evidence of circulating liquid maldistribution. The original design of the plant consisted of routing aqueous liquid effluents from the knock-out drums of Dehydration and Acid Gas Removal Units back to the carbonate and DEA systems. ADGAS carried out a modification in 1995 to re-route these liquids to the blowdown system, in order to reduce the accumulation of heavy hydrocarbons.

Despite the above modification, excessive amounts of antifoam agents were inevitably injected into the amine and carbonate absorbers to prevent liquid hold-up and avoid tripping the plant. The foaming problem was also aggravated by the lack of overweir facilities from the rich carbonate flash drum which had an internal construction deficiency.

The presence of excess amounts of antifoam chemicals and heavy hydrocarbons necessitated replacement of the complete inventory of DEA and carbonate solutions by fresh material.

Studies conducted by ADGAS identified the accumulation of heavy hydrocarbons as the main source of the foaming problem.

In May 1997, Train-3 was shut down for the major overhaul. Equipment inspection indicated that the upstream feed gas knock out drum had its bottom drain line blocked with sludge, and its vane separator damaged. The PGA showed no sign of internal mechanical damage, but liquid maldistribution was confirmed. The bottom level of sight glass tapping for the overweir compartment of the rich carbonate flash drum was found drilled outside the compartment leading to non-availability of any level indication.

After modifying the internals of this equipment, the Contractual Test Run of the AGR unit was conducted in November 1997. The test revealed that the plant in general performed satisfactorily at 87% of design acid gas load. The PGA performance had significantly improved after...
modifying the tower liquid distributors and rectifying the liquid maldistribution problem.

The CO2 removal efficiency increased by 12%; up to 99% of design CO2 acid gas could be successfully removed by the PGA. The foaming tendency of the carbonate and DEA solution has considerably reduced after modifying the carbonate flash drum internals and cleaning the feed gas line. The above measures resulted in a much more stable operation of the acid gas removal unit; a considerable saving of US$100,000 per year due to optimised antifoam usage. This increased plant reliability and considerably reduced frequency for operators’ intervention. In conclusion, the acid gas removal design capacity was restored and the foaming tendency was reduced after the modification/repairs were implemented. It was felt however that for further stable operations, two future projects should be considered: modify upstream feed gas separation system and apply continuous activated carbon filtration to the carbonate solution.

Successful Changeover of Gas Treating Solvent From DEA to MDEA at ADNOC Gas Processing Unit

Zulfiqar Ali Khalid of ADNOC spoke about the successful changeover of gas treating solvent from DEA to MDEA at ADNOC’s processing Unit at Habshan.

ADNOC operates gas treatment facilities at Habshan under Gas Processing & Pipelines Division. Tharmama ‘C’ gas treating facilities were commissioned in 1984. Two identical units were designed to handle sour gas with DEA as treating solvent with original capacity of 225 MMSCFD each. Capacity was increased to 270 MMSCFD (each unit) in 1989 after debottlenecking.

Due to increase in gas demand in U.A.E., plant expansion was undertaken and OGD-I Project was implemented. To enhance treating capacity of existing plant, it was decided to utilize selective treating solvent MDEA which indicated capacity enhancement besides substantial savings in utilities cost and further stabilizing unit operation by minimizing corrosion and improving sulphur recovery unit performance with better H2S / CO2 ratio. In one of the amine treating units (unit 31) successful changeover of solvent from DEA to MDEA was implemented.

In his presentation, Mr. Khalid spoke in detail of the Unit design. He also highlighted the benefits achieved from the successful implementation. The major benefits attributed to the changeover are selectivity / capacity enhancement, corrosion control, utilities saving, improved SRU performance, and control of foaming tendency.

Empirical Correlations to Predict Associated Gas Composition of Bahrain Field

In a presentation by K. Kumar and Isa A. Janahi of the Bahrain National Oil Company, the empirical correlations to predict the associated gas composition of the Bahrain field were discussed.

Bahrain field produces oil from 15 reservoirs. Individual wells are generally completed in a number of these reservoirs. Well production is routed through one of 16 manifolds where gas-oil separation takes place. The gas from the manifolds is compressed and sent to the LPG recovery plant to extract the liquid components. The practice of collecting gas samples from the well manifolds started in 1974, in order to forecast liquid recovery from associated gas.

Mr. Janahi, the Head Reservoir Engineer at BANOCO, and Mr. Kumar, a reservoir engineer, spoke about the development of a model for forecasting the composition of associated gas produced from Bahrain field. The composition of well manifold gas samples collected from 1974 to 1997 have been compiled and the variation of the composition of the individual components with a number of parameters have been correlated. Multiple regression has been carried out to incorporate the effects of the parameters, namely gas injection rate, gas lift gas and gas-oil ratio influencing the associated gas composition with time and correlations have been established for the different components in the associated gas with these parameters. These correlations fit the data extremely well and can be used for forecasting the associated gas composition in future.

Enhancing BGP Gas Dehydration System

Shelaiwih Naser Al-Zuabi presented a paper on a program to enhance and upgrade the plant gas dehydration system in Saudi Aramco-Berri Gas Plant.

The performance of any gas dehydration unit using molecular sieves is very crucial to the recovery process of NGL from associated gas streams, said Mr. Al-Zuabi, and Saudi Aramco has established an ambitious upgrading and enhancing program for the plant gas dehydration system which started a few years ago.

The purpose of this program is to implement the most up... (Continued on page 5)
to-date and technically proven ideas pertinent to the gas dehydration unit, yet in the most cost-effective way. Many dehydration unit operating and design parameters have been determined to be somewhat standard to the modern design of the gas dehydration unit. These include mainly the pressure drop level across the gas dehydrators, the feed gas moisture content and rate, the regeneration temperature, and the molecular sieves quality that is controlled by the company’s ongoing molecular sieves quality assurance program.

The action plan to improve the plant dehydration unit reliability was placed as long-term and short-term modifications. The short-term modifications, which were all completed recently, include installing an intermediate platform inside each dehydrator, using variable drying cycle timing and replacing the upstream K.O. drum demister pad. The long-term modifications, which will be completed in the near future, are to install an additional gas dehydrator, raise the regeneration temperature, install liquid coalescer, and work with the company’s task force on molecular sieves.

Environment-Friendly Corrosion Inhibitor in Hydrogen Plant

Abdul-Qader M. Al-Furaj and P.K. Mukhopadhyay of Kuwait National Petroleum Company made a presentation on the environment-friendly corrosion inhibitor used in Shuaiba Refinery in Ahmadi, Kuwait.

Shuaiba Refinery, one of the three refineries of Kuwait National Petroleum Company, is the world’s first all-hydrogen Refinery. Commissioned in 1968, the refinery presently has a refining capacity of 200,000 BPD. Right from its inception the Refinery has been continuously striving at increasing its output, improving operational and economic efficiencies and working towards an environment-friendly operation. Due to the corrosion problems encountered in early stage of operation, a proprietary corrosion inhibitor based on sodium arsenite was introduced as a corrosion inhibitor in 1976. Though sodium arsenite has performed satisfactorily, it is a known carcinogenic and its use is prohibited in many countries. Faced with these problems, the Refinery decided to replace the arsenic inhibitor with an environment-friendly organic inhibitor. From the company’s own experience and feedback from other users, it was concluded that the available inhibitors in the market generally used in acid gas plants were not adequate.

A specialist laboratory was hired to run preliminary laboratory studies. After numerous tests in laboratory and review of these results, a corrosion inhibitor formulation was considered satisfactory. This inhibitor was put to field trial, initially for three months and finally for sixteen months. The result was found to be very satisfactory and substantial benefits in environmental, safety, and operational cost were achieved.

Mr. Al-Furaj and Mr. Mukhopadhyay highlighted the methodology for performance monitoring of the inhibitor, observation during and after trials runs with special emphasis on corrosion monitoring, equipment condition, and improvement in operation achieved in terms of environmental pollution.

The change to the new inhibitor has not only kept the corrosion rates within control but has also significantly improved the operation. The foaming in the unit has been almost negligible, reducing the antifoam consumption drastically. In fact, during the field trial of 16 months, no antifoam was added to the system. The clarity of the amine solution which was very clear even after 16 months is an indication that the corrosion rate in the unit has been significantly low. There was no requirement for operating the reclaimer during this period. Even later, the frequency of operation of the reclaimer has been significantly reduced. This resulted in less amount of arsenic contaminated sludge which needs special attention for storage and disposal.

After concluding that the new non-toxic inhibitor was effective and satisfactory, it was decided to replace previously used toxic arsenic corrosion inhibitor for CO2 removal system in three hydrogen units by the newly developed non-toxic corrosion inhibitor. The last unit changeover was in December 1997. So far all three units are working satisfactorily without any significant corrosion problem.

Integrally Geared Turbomachines for Hydrocarbon Service

Dr. Gerd U. Woelk of GHH BORSIG Turbomachinen GmbH presented a paper on integrally geared turbomachines for hydrocarbon service.

Integrally geared centrifugal compressors, mainly driven by electric motors via the central gear shaft, were introduced to the industry since many years, starting with operation on air and expanding for applications on several process gases, including hydrocarbons. Machine sets for the chemical and petrochemical industries containing not only air or gas compressors but also steam or gas turbines, were demanding the possibility for high speed drive of integrally geared compressors without an additional gear box. The drive options were extended. So the integrally geared compressors can alternately or additionally be driven by a steam or gas turbine without an external intermediate gear, via a pinion shaft arranged in the lower part of the gear case.

When starting with the technology of integrally geared centrifugal compressors, they were only used for compression duty. If there was a possibility or a need for energy recovery from process tail gases, the expander within the machine set normally was a single-shaft multi-stage or a separate integrally geared machine with axial wheels.

(Continued on page 6)
(From page 5)

or radial-inflow impellers on the pinions.
An even more compact and economical unit can be reached by integrating the expander stages into the gear box configuration of the integrally geared compressor, thus getting a ‘componder’.
Lower investment costs, substantially reduced civil engineering costs resulting from smaller facility dimensions, and reduced energy costs have opened up a wide range of applications for integrally geared turbomachines. Nowadays these machines are essential in the air separation industry, in a number of processes in the primary materials industry for the supply of process-air, or in some processes for the handling of different process-gases, including hydrocarbons. New applications are constantly being found for this machine design through the selection of the right materials, new sealing concepts and, in particular, their flexibility when it comes to meet specific process requirements. Rising energy costs and the need to minimize investment costs will, in the years to come, open up additional markets for this machine type.

A Brief Assessment of the 7th Technical Conference

The 7th Technical Conference held in May 1999 at the Holiday Inn Hotel was attended by 126 people. Excluding speakers, session chairman and Executive Committee members, the number of delegates was 113.
A total of 79 Evaluation Forms were received from delegates. The paper entitled “Mercury in Natural Gas - The GPIC Experience” presented by Yousif Abdulla Yousif, Technical Services Manager at GPIC, was voted by the delegates as the best paper at the Conference.

At right, Yousif Abdulla Yousif with Chapter Chairman
Mohammed Al-Khalifa

Summary of the Chapter’s Annual Organization Meeting 1999

The Chapter’s Annual Organization Meeting was held on May 18, 1999. Having reached a quorum, the agenda included:

* The approval of the minutes of the previous organization meeting, held in Doha on June 4, 1997.
* The approval of the previous Executive Committee meeting held in Dubai on February 25, 1999.
* Officer’s Report.
* The Chapter’s future strategy and plans.
* Elections for the Executive Committee. In his report the Chairman of the Chapter, Mohammed Saleh Shaikh Ali, advised the meeting that due to his work commitments and busy schedule he would be unable to devote sufficient time and attention to the GPA as Chairman of the Chapter. Accordingly he had decided to resign and proposed the nomination of Dr. Shaikh Mohammed Al-Khalifa as the new Chairman of the Chapter.

On behalf of the members, Mr. Al-Abdulmoghi expressed his regret that Mohammed Saleh could not continue as Chairman of the Chapter, adding that the meeting appreciated the reasons for making this decision, and thanked him for all the work he had put in to ensure the growth and success of the Chapter over the last six years.

The meeting reached a consensus on electing Dr. Shaikh Mohammed Al-Khalifa as the new Chairman of the Chapter.
The Vice-Chairman, Secretary-Treasurer, four members and the associate members were re-nominated and they accepted continuing in their posts.

The new Executive Committee now consists of:

* Dr. Shaikh Mohammed Al-Khalifa
 BAPCO - Chairman
* Mohammed Al-Abdulmoghi
 ARAMCO - Vice-Chairman
* Ahmed Majid
 BANAGAS - Secretary-Treasurer
* Abdulrahman Al-Suwardi
 QGPC - Member
* Abdul Aziz Al-Ameri
 ADNOC - Member
* Yousif Abdulla Yousif
 GPIC - Member
* Ali Ahmed Abdulla
 BP-AMCOC Sharjah - Member
* Samir Khoury
 C.C.C. - Member
Summary of the Chapter’s Executive and Technical Committee Meetings 1999

During 1999 two meetings were held, on February 25 and December 1. Agendas included discussions on the new membership of the member companies, a brief report on the 7th Technical Conference which was held on May 19, 1999, approval of the finance report, review of the Year 2000 calendar, and the preparations for the 8th Technical Conference to be held in Bahrain in May, 2000. The Technical Committee also met on December 25, 1999, to discuss selection of papers and the arrangement for the 8th Technical Conference. The members of this Committee are:

* Mohammed Al-Abdulmogioni - ARAMCO
* Kefah Al-Fadagh - ARAMCO
* Ahmed Al-Khan - BANOCO
* Mohammed Bu-Rashid - BANAGAS
* Ahmed Majid - BANAGAS

Bu-Rashid Attends 78th GPA Annual Convention

Mohammed A. Bu-Rashid represented the GPA - GCC Chapter at the Gas Processors Association’s annual meeting in Nashville, Tennessee, U.S.A. in March 1999. The 78th GPA Annual Convention was held under the theme: “Vision 2000 - Growth Through Technology”.

Mr. Bu-Rashid made a brief presentation on issues related to the Chapter’s activities and provided information on member companies. An informative poster showing the GCC chapter’s activities was also placed in the registration area.

Mohammed reported that the Convention’s program has been expanded with over 50 papers being presented covering topics related to the latest technology, actual operating experiences and the changing business landscape. He added that the Convention was extremely well-organized and well-attended with over 1,800 participants, including representatives from other international chapters.

He said that attending the GPA annual meeting will definitely promote the GPA - GCC Chapter and will also help in making the Chapter’s conferences more effective.

The 79th Annual Convention will be held next year in Atlanta, Georgia, U.S.A.

Outlook 2000

Dr. Rabwann Lukman
Secretary General
Organisation of the Petroleum Exporting Countries (OPEC)

“We have already seen, earlier this year, how order can be restored to the market by major oil producers agreeing to coordinate their efforts to undertake the necessary remedial measures when prices fall too far out of line with longer-term fundamentals. This has proven to be successful not just with the recent crisis but also on earlier occasions. The difference with the latest situation, however, is that some leading non-OPEC producers have become much more firmly integrated into the process. This is a development which OPEC has always encouraged and thus is greatly welcomed. But the real challenge, as ever, remains the sustainability of such measures. This is the area on which we must concentrate our efforts now in order to safeguard the market from future disruption by impulses whose eventual impact may be out of all proportion to their initial intensity, as has often been the case in the past. Our approach must be visionary rather than reactive.”

Dr. David H. Knopp
Head, Oil Industry and Markets Division
International Energy Agency (IEA)

“The critical variable in next year’s oil market equation is the level of OPEC production. Price and stock levels are likely to give strong signals to relax production restraint early in the year. However, the backside of Y2K and the sponge-like nature of the bone-dry public coffers in many of the producing countries may delay relaxation of quotas (and a correction in prices) until the spring; but that is when seasonal demand declines normally occur. Whatever the first quarter holds in store, stocks will need to be rebuilt in next year’s second and third quarter to prepare for the winter heating season. Finally, there is always a chance that Iraq will manipulate concerns about its exports and move oil in and out of the market in unhelpful ways.”

Michael Foster
Chief Executive
Kvaerner Engineering & Construction

“The past year brought extremes in oil price, driven by political change. There are serious doubts that the current oil price is sustainable and although it may continue at this level until the middle of the year, beyond that, all the indicators point to a price considerably below the current level. What we are unable to predict is how far the oil price will drop in value and this uncertainty will continue to cause depressed market conditions for some time to come. Gas as an abundant, more environmentally-friendly fuel and feedstock is attracting attention, but in many cases it is located in the

(Continued on page 8)
wrong place for the market.”
Jean-Claude Barbier
Executive Vice President
IFP

“In the Middle East, expect the national oil companies to adjust their business strategy to strengthen their position with respect to the new super majors. Continued investment can be expected.”
Phil Hunt
Principal

About the GPA - GCC Chapter

Purpose
The purpose of the GPA - GCC Chapter, formed in April 1993, is to serve as a forum for the exchange of ideas and information concerned with the gas-processing industry with a view to improving plant operations and related activities.

Membership
Membership in this organization is open to GCC representatives of:
(a) Companies owning and/or processing gas. These are classified as “Members”.
(b) GCC-based organizations involved in the supply and/or services to the gas industry. These are classified as “Associate Members” and are entitled to vote on all matters in the Organization’s Annual Meeting except for the Executive Committee elections.

All membership applications are considered and approved by the Executive Committee.

Dues
The annual dues for Chapter membership is US$1,325.00, payable in advance on or before the first day of March.

Executive Committee 1999/2000

Chairman
Mohammed Bin Khalifa Al-Khalifa
The Bahrain Petroleum Company

Vice-Chairman
Mohammed A. Al-Abdulmoghi
Saudi Aramco

Secretary - Treasurer
Ahmed Majid
Bahrain National Gas Company

Members
Abdulrahman Al-Suwaidi
Qatar General Petroleum Corporation
Abdul Aziz Al-Ameri
Abu Dhabi National Oil Company

Yousif Abdulla Yousif
Gulf Petrochemicals Industries (Bahrain)

Ali Ahmed Abdulla
BP-AMOCO Sharjah

Samir Khoury
C.C.C. (Suppliers Representative)

GPA - GCC Chapter Officers (l-r): Ahmed Majid, Mohammed Al-Abdulmoghi and Mohammed Al-Khalifa

Technical Committee 1999/2000

Company
SAUDI ARAMCO
ADNOC
BP-AMOCO SHARJAH
ADCO
GPIC
BANOCO
BANAGAS

Representative
Mohammed Al-Abdulmoghi
Ibrahim Ahmed
Ali Ahmed Abdulla
Adel Wasfi
Yousif Abdulla Yousif
Ahmed Al-Khan
Mohammed Bu-Rashid

For more information please contact:
Ahmed Majid, Secretary - Treasurer
P.O. Box 25094, Awali, Bahrain
Tel.: +973-752402
Fax: +973756991
Web site: www.banagas.com.bh/gpa